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Salinity Processes in the Upper ocean Regional Study

N. Atlantic evaporation-precipitation and salinity are highly correlated.
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Salinity Processes in the Upper ocean Regional Study

Multi-agency (NASA, NOAA, NSF)
Multi-national (US, Spain, France, Ireland)

Designed to exploit new autonomous technology (Floats, gliders,
wavegliders, drifters etc.)

Linked to but not dependent on Aquarius and SMOS salinity
satellites

Cruises:

French -Thalassa 8/16/12 -9/13/12, Canaries - Azores

US - Knorr 9/6/12-10/9/12, Woods Hole — Azores (asset deployment)

US - Endeavor 3/15/13 -4/15/13, Narragansett — Narragansett (asset service)
Spanish - Sarmiento de Gamboa 3/16/13-4/13/13, Canaries - Azores

US - Endeavor 9/19/13-10/16/13, Azores — Narragansett (asset recovery)



Challenge: Integrating a diverse set of measurements

* Floats
e Gliders
e Drifters
* Moorings
* Ships

* AUVs

* Satellites

e CTD &
Micro-
structure
profiling




SPURS

Salinity Processes in the Upper ocean Regional Study

Sept. Oct cruise of R/V Knorr

*All assets deployed successfully: moorings, gliders, floats, drifters, Wave

Gliders, mixed layer float, microstructure profiler, etc

«Salinity max surveyed and found to

have record high salinity ~37.8

Underway data and sampled data
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Two Approaches:

e 1. Salinity budget at the central mooring on
short time-scales (T. Farrar)

e 2. Average “isohaline” budget on long time-
scales (R. Schmitt)



box” (Tom Farrar)

Aquarius salinity, March 2012

Argo profiles

Wavegliders
—Seagliders

Moorings




Aquarius salinity, March 2012
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Aquarius salinity, March 2012
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Preliminary mixed-layer temperature balance:

Evaluated for 3-week running average:
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-Fy mixed-layer temperature balance:
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Salinity tendency (kg/ka/s)
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Discussion of this preliminary budget:

(1) The mixed-layer temperature tendency appears to be roughly balanced by the sum
of surface heat flux and mixed-layer “entrainment” terms

(2) The mixed-layer salinity balance appears to be far from 1D on the 3-week
timescales examined here

(3) This difference is not too surprising because horizontal gradients of SSS are
relatively strong. Surface heat fluxes will tend to damp SST anomalies, while
surface freshwater fluxes are essentially independent of SSS.

(4) The relative importance of terms in the budget equations will be different at
different spatial and temporal scales— a larger goal of SPURS is to improve
understanding of the various physical phenomena setting the mean and variability
of SSS in the region.



Alternative Approach: An “isohaline” control volume

The idea goes back to Niiler and Stevenson (1982), “The
heat budget of tropical ocean warm-water pools”, J. Mar.
Res., 40, 465-480.

Define a control volume by an isohaline, then the mean
advective terms across this surface all have the same salinity
and the balanced dynamical flows can be dropped from the
equations (Ekman and Sverdrup circulations). Only the net
water loss due to Evaporation minus Precipitation (E-P)
counts in the mean advective salt balance. This must be
compensated for by vertical and lateral mixing processes.
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Salt Fluxes
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ivity clearly seen i

International Pacific Research Center, SOEST, University of Hawaii
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Data sources

Use World Ocean Atlas 2009

Define volume by S > 37.0

Surface Area = 2.9 x 10° km?

Net water loss from E-P=0.11 Sv
(Schanze, Schmitt and Yu, 2010)

Net surface salt flux = 3.9 psu-Sv



Salinity Greater than 37psu @0 meters depth
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Diffusivity Calculations

* SaltFlux: i =(E —P)*S
 Balance:

f FedAg = f K,S, dAg + j K., V,S dAy

Estimate K|, from microstructure
measurements from VMP and T-Gliders,
Estimate K, from SSS drifters and models



First results:

Average Turbulent diffusivity from ~1000 T-Glider
dives at the 37.0 isohaline yields:

K,= 6.8 x 10> m?2/s = salt flux = 1.05 PSU-Sv

Vertical mixing accounts for ~% of the salt flux put in
at the surface.

Requires K, ~5x10°m°s® =~ 0.1msx50km
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Salinity Processes in the Upper ocean Regional Study

Summary: SPURS 1in the North Atlantlc Salmlty Maximum

e A well instrumented field program (with 5 cruises) was
carried out in the NA Salinity Maximum, providing
opportunities for two approaches to budget calculations.

* The moored time series, in combination with Lagrangian
measures of the lateral gradients, allows point budgets to
be evaluated on ~3 week time scales.

* The isohaline control volume is a promising approach for
evaluating the large space and long time-scale balances in
this unique oceanic closed control volume.

* Much analysis remains to be done!



